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Preface

channels, the BCJR algorithm for iterative decoding of turbo codes, and the sum-product
algorithm.

Chapter 9 1s focused on digital communication through band-limited channels.
Topics treated 1n this chapter include the characterization and signal design for band-
limited channels, the optimum receiver for channels with intersymbol interference and
AWGN, and suboptimum equalization methods, namely, linear equalization, decision-
feedback equalization, and turbo equalization.

Chapter 10 treats adaptive channel equalization. The LMS and recursive least-
squares algorithms are described together with their performance characteristics. This
chapter also i1ncludes a treatment of blind equalization algorithms.

Chapter 11 provides a treatment of multichannel and multicarrier modulation.
Topics treated include the error rate performance of multichannel binary signal and
M -ary orthogonal signals in AWGN channels; the capacity of a nonideal linear filter
channel with AWGN; OFDM modulation and demodulation; bit and power alloca-
tion in an OFDM system; and methods to reduce the peak-to-average power ratio in
OFDM.

Chapter 12 is focused on spread spectrum signals and systems, with emphasis
on direct sequence and frequency-hopped spread spectrum systems and their perfor-
mance. The benefits of coding in the design of spread spectrum signals 1s emphasized
throughout this chapter.

Chapter 13 treats communication through fading channels, including the charac-
terization of fading channels and the key important parameters of multipath spread and
Doppler spread. Several channel fading statistical models are introduced, with empha-
sis placed on Rayleigh tading, Ricean fading, and Nakagami fading. An analysis of the
performance degradation caused by Doppler spread in an OFDM system is presented,
and a method tor reducing this performance degradation 1s described.

Chapter 14 is focused on capacity and code design for fading channels. After intro-
ducing ergodic and outage capacities, coding for fading channels 1s studied. Bandwidth-
efficient coding and bit-interleaved coded modulation are treated, and the performance
of coded systems 1n Rayleigh and Ricean fading is derived.

Chapter 135 provides a treatment of multiple-antenna systems, generally called
multiple-input, multiple-output (MIMO) systems, which are designed to yield spatial
signal diversity and spatial multiplexing. Topics treated 1n this chapter include detection
algorithms for MIMO channels, the capacity of MIMO channels with AWGN without
and with signal fading, and space-time coding.

Chapter 16 treats multiuser communications, including the topics of the capacity
of multiple-access methods, multiuser detection methods for the uplink in CDMA
systems, interference mitigation in multiuser broadcast channels, and random access
methods such as ALOHA and carrier-sense multiple access (CSMA).

With 16 chapters and a variety of topics, the instructor has the flexibility to design
either a one- or two-semester course. Chapters 3, 4, and 5 provide a basic treatment of
digital modulation/demodulation and detection methods. Channel coding and decoding
treated 1n Chapters 7, 8, and 9 can be included along with modulation/demodulation
In a one-semester course. Alternatively, Chapters 9 through 12 can be covered in place
of channel coding and decoding. A second semester course can cover the topics of

XV1l
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Preface

communication through fading channels, multiple-antenna systems, and multiuser com-
munications.

The authors and McGraw-Hill would like to thank the following reviewers for their
suggestions on selected chapters of the fifth edition manuscript:

Paul Salama, Indiana University/Purdue University, Indianapolis; Dimitrios Hatz-
1nakos, University of Toronto, and Ender Ayanoglu, University of California, Irvine.

Finally, the first author wishes to thank Gloria Doukakais for her assistance in typing
parts of the manuscript. We also thank Patrick Amihood for preparing several graphs
in Chapters 15 and 16 and Apostolos Rizos and Kostas Stamatiou for preparing parts
of the Solutions Manual.






Output
signal

Digital Communications

Information

Source Channel
source and

encoder encoder

Digital

modulator

input transducer

Channel

Output Source Channel
transducer decoder decoder

Digital

demodulator

FIGURE 1.1-1
Basic elements of a digital communication system.

the fidelity of the received signal. In effect, redundancy in the information sequence
a1ds the receiver 1n decoding the desired information sequence. For example, a (trivial)
form of encoding of the binary information sequence 18 simply to repeat each binary
digit m times, where m 1s some positive integer. More sophisticated (nontrivial) encod-
Ing 1volves taking k information bits at a time and mapping each k-bit sequence into
a unique n-bit sequence, called a code word. The amount of redundancy introduced by
encoding the data in this manner 1s measured by the ratio n/ k. The reciprocal of this
ratio, namely k/n, 1s called the rate of the code or, simply, the code rate.

The binary sequence at the output of the channel encoder 1s passed to the digital
modulator, which serves as the interface to the communication channel. Since nearly
all the communication channels encountered in practice are capable of transmitting
electrical signals (wavetorms), the primary purpose of the digital modulator is to map
the binary information sequence into signal wavetforms. To elaborate on this point, let
us suppose that the coded information sequence 1s to be transmitted one bit at a time at
some uniform rate R bits per second (bits/s). The digital modulator may simply map the
binary digit O into a waveform sq(#) and the binary digit 1 into a waveform s¢(#). In this
manner, each bit from the channel encoder 1s transmitted separately. We call this binary
modulation. Alternatively, the modulator may transmit » coded information bits at a
time by using M = 2b distinct waveforms s; (z),1 =0,1,..., M — 1, one waveform
for each of the 2° possible b-bit sequences. We call this M-ary modulation (M > 2).
Note that a new b-bit sequence enters the modulator every b/ R seconds. Hence, when
the channel bit rate R 1s fixed, the amount of time available to transmit one of the M
waveforms corresponding to a b-bit sequence 1s b times the time period in a system
that uses binary modulation.

The communication channel 1s the physical medium that is used to send the signal
from the transmitter to the receiver. In wireless transmission, the channel may be the
atmosphere (free space). On the other hand, telephone channels usually employ a variety
of physical media, including wire lines, optical fiber cables, and wireless (microwave
radio). Whatever the physical medium used for transmission of the information, the
essential feature 1s that the transmitted signal 1s corrupted in a random manner by a
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the receiver. Other types of signal degradations that may be encountered in transmission
over the channel are signal attenuation, amplitude and phase distortion, and multipath
distortion.

The effects of noise may be minimized by increasing the power in the transmitted
signal. However, equipment and other practical constraints limit the power level in
the transmitted signal. Another basic limitation 1s the available channel bandwidth.
A bandwidth constraint 1s usually due to the physical limitations of the medium and
the electronic components used to implement the transmitter and the receiver. These
two limitations constrain the amount of data that can be transmitted reliably over any
communication channel as we shall observe 1n later chapters. Below, we describe some
of the important characteristics of several communication channels.

Wireline Channels

The telephone network makes extensive use ot wire lines tor voice signal transmission,
as well as data and video transmission. Twisted-pair wire lines and coaxial cable are
basically guided electromagnetic channels that provide relatively modest bandwidths.
Telephone wire generally used to connect a customer to a central office has a bandwidth
of several hundred kilohertz (kHz). On the other hand, coaxial cable has a usable
bandwidth of several megahertz (MHz). Figure 1.2-1 1llustrates the frequency range of
guided electromagnetic channels, which include waveguides and optical fibers.

Signals transmitted through such channels are distorted in both amplitude and
phase and further corrupted by additive noise. Twisted-pair wireline channels are also
prone to crosstalk interference from physically adjacent channels. Because wireline
channels carry a large percentage of our daily communications around the country and
the world, much research has been pertormed on the characterization of their trans-
mission properties and on methods for mitigating the amplitude and phase distortion
encountered 1n signal transmission. In Chapter 9, we describe methods for designing
optimum transmitted signals and their demodulation; in Chapter 10, we consider the
design of channel equalizers that compensate for amplitude and phase distortion on
these channels.

Fiber-Optic Channels

Optical fibers offer the communication system designer a channel bandwidth that is
several orders of magnitude larger than coaxial cable channels. During the past two
decades, optical fiber cables have been developed that have a relatively low signal atten-
uation, and highly reliable photonic devices have been developed for signal generation
and signal detection. These technological advances have resulted in a rapid deploy-
ment of optical fiber channels, both in domestic telecommunication systems as well as
for transcontinental communication. With the large bandwidth available on fiber-optic
channels, 1t 1s possible tor telephone companies to offer subscribers a wide array of
telecommunication services, including voice, data, facsimile, and video.

The transmitter or modulator 1in a fiber-optic communication system is a light
source, either a light-emitting diode (LED) or a laser. Information is transmitted by
varying (modulating) the intensity ot the light source with the message signal. The light
propagates through the fiber as a light wave and 1s amplified periodically (in the case of
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FIGURE 1.2-1
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digital transmission, 1t 1s detected and regenerated by repeaters) along the transmission
path to compensate tor signal attenuation. At the receiver, the light intensity 1s detected
by a photodiode, whose output 1s an electrical signal that varies in direct proportion
to the power of the light impinging on the photodiode. Sources of noise in fiber-optic
channels are photodiodes and electronic amplifiers.

Wireless Electromagnetic Channels

In wireless communication systems, electromagnetic energy is coupled to the prop-
agation medium by an antenna which serves as the radiator. The physical size and
the configuration of the antenna depend primarily on the frequency of operation. To
obtain efficient radiation of electromagnetic energy, the antenna must be longer than
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1% of the wavelength. Consequently, a radio station transmitting in the amplitude-
modulated (AM) frequency band, say at f. = 1 MHz [corresponding to a wavelength
of A = c¢/f. = 300 meters (m)], requires an antenna of at least 30 m. Other important
characteristics and attributes of antennas for wireless transmission are described in
Chapter 4.

Figure 1.2-2 1llustrates the various frequency bands of the electromagnetic spec-

trum. The mode of propagation ot electromagnetic waves in the atmosphere and in
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Frequency range for wireless electromagnetic channels. [Adapted from Carlson (1975), 2nd
edition, (©) McGraw-Hill Book Company Co. Reprinted with permission of the publisher.)
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luteation of sround-wave propagation.

free space may be subdivided into three categories, namely, ground-wave propagation,
sky-wave propagation, and line-of-sight (LOS) propagation. In the very low frequency
(VLF) and audio frequency bands, where the wavelengths exceed 10 km, the earth
and the 1onosphere act as a waveguide for electromagnetic wave propagation. In these
frequency ranges, communication signals practically propagate around the globe. For
this reason, these frequency bands are primarily used to provide navigational aids from
shore to ships around the world. The channel bandwidths available 1n these frequency
bands are relatively small (usually 1-10 percent of the center frequency), and hence the
information that 1s transmitted through these channels 1s of relatively slow speed and
generally confined to digital transmission. A dominant type of noise at these frequen-
cies 1s generated from thunderstorm activity around the globe, especially 1n tropical
regions. Interference results from the many users ot these frequency bands.

Ground-wave propagation, as illustrated in Figure 1.2-3, 1s the dominant mode ot
propagation for frequencies i1n the medium frequency (MF) band (0.3-3 MHz). This 1s
the frequency band used for AM broadcasting and maritime radio broadcasting. In AM
broadcasting, the range with ground-wave propagation of even the more powerful radio
stations 1s limited to about 150 km. Atmospheric noise, man-made noise, and thermal
noise from electronic components at the receiver are dominant disturbances for signal
transmission in the MF band.

Sky-wave propagation, as illustrated in Figure 1.2—4, results from transmitted sig-
nals being reflected (bent or retracted) from the 1onosphere, which consists of several
layers of charged particles ranging in altitude from 50 to 400 km above the surface ot
the earth. During the daytime hours, the heating of the lower atmosphere by the sun
causes the formation of the lower layers at altitudes below 120 km. These lower layers,
especially the D-layer, serve to absorb frequencies below 2 MHz, thus severely limiting
sky-wave propagation of AM radio broadcast. However, during the nighttime hours, the
electron density 1n the lower layers of the 1onosphere drops sharply and the tfrequency
absorption that occurs during the daytime 1s significantly reduced. As a consequence,
powerful AM radio broadcast stations can propagate over large distances via sky wave

over the F-layer of the 1onosphere, which ranges from 140 to 400 km above the surtace
of the earth.
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A frequently occurring problem with electromagnetic wave propagation via sky
wave in the high frequency (HF) range 1s signal multipath. Signal multipath occurs
when the transmitted signal arrives at the receiver via multiple propagation paths at dif-
ferent delays. It generally results 1n intersymbol interterence 1n a digital communication
system. Moreover, the signal components arriving via different propagation paths may
add destructively, resulting in a phenomenon called signal fading, which most people
have experienced when listening to a distant radio station at night when sky wave is
the dominant propagation mode. Additive noise in the HF range 1s a combination of
atmospheric noise and thermal noise.

Sky-wave 1onospheric propagation ceases to exist at frequencies above approx-
imately 30 MHz, which 1s the end of the HF band. However, it 1s possible to have
10nospheric scatter propagation at frequencies in the range 30—60 MHz, resulting from
signal scattering from the lower 1onosphere. It 1s also possible to communicate over
distances ot several hundred miles by use ot tropospheric scattering at frequencies in
the range 40-300 MHz. Troposcatter results from signal scattering due to particles
in the atmosphere at altitudes of 10 miles or less. Generally, 10nospheric scatter and
tropospheric scatter involve large signal propagation losses and require a large amount
of transmitter power and relatively large antennas.

Frequencies above 30 MHz propagate through the 1onosphere with relatively little
loss and make satellite and extraterrestrial communications possible. Hence, at fre-
quencies 1n the very high frequency (VHF) band and higher, the dominant mode of
electromagnetic propagation 1s LOS propagation. For terrestrial communication sys-
tems, this means that the transmitter and receiver antennas must be in direct LOS with
relatively little or no obstruction. For this reason, television stations transmitting in the
VHF and ultra high trequency (UHF) bands mount their antennas on high towers to
achieve a broad coverage area.

In general, the coverage area tor LOS propagation 1s limited by the curvature of
the earth. If the transmitting antenna 18 mounted at a height # m above the surface of
the earth, the distance to the radio horizon, assuming no physical obstructions such
as mountains, 1s approximately d = +/15h4 km. For example, a television antenna
mounted on a tower of 300 m 1n height provides a coverage ot approximately 67 km.
As another example, microwave radio relay systems used extensively for telephone and
video transmission at frequencies above 1 gigahertz (GHz) have antennas mounted on
tall towers or on the top of tall buildings.

The dominant noise limiting the pertormance of a communication system in VHF
and UHF ranges 1s thermal noise generated 1n the receiver front end and cosmic noise
picked up by the antenna. At frequencies in the super high frequency (SHF) band above
10 GHz, atmospheric conditions play a major role in signal propagation. For example,
at 10 GHz, the attenuation ranges from about 0.003 decibel per kilometer (dB/km) in
light rain to about 0.3 dB/km 1n heavy rain. At 100 GHz, the attenuation ranges from
about 0.1 dB/km 1n light rain to about 6 dB/km 1n heavy rain. Hence, in this frequency
range, heavy rain introduces extremely high propagation losses that can result in service
outages (total breakdown 1n the communication system).

At tfrequencies above the extremely high frequency (EHF) band, we have the in-
frared and visible light regions of the electromagnetic spectrum, which can be used
to provide LOS optical communication in free space. To date, these frequency bands
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have been used 1n experimental communication systems, such as satellite-to-satellite
Jinks.

Underwater Acoustic Channels

Over the past few decades, ocean exploration activity has been steadily increasing.
Coupled with this increase 1s the need to transmit data, collected by sensors placed
under water, to the surface ot the ocean. From there, it is possible to relay the data via
a satellite to a data collection center.

Electromagnetic waves do not propagate over long distances under water except at
extremely low frequencies. However, the transmission of signals at such low frequencies
is prohibitively expensive because of the large and powertful transmitters required. The
attenuation of electromagnetic waves in water can be expressed in terms of the skin
depth, which 1s the distance a signal 1s attenuated by 1/e. For seawater, the skin depth
§ = 250/./f, where f is expressed in Hz and § is in m. For example, at 10 kHz, the
skin depth 1s 2.5 m. In contrast, acoustic signals propagate over distances of tens and
even hundreds ot kilometers.

An underwater acoustic channel 1s characterized as a multipath channel due to
signal reflections from the surface and the bottom of the sea. Because of wave mo-
tion, the signal multipath components undergo time-varying propagation delays that
result in signal fading. In addition, there 1s frequency-dependent attenuation, which 1s
approximately proportional to the square of the signal frequency. The sound velocity
is nominally about 1500 m/s, but the actual value will vary either above or below the
nominal value depending on the depth at which the signal propagates.

Ambient ocean acoustic noise 1s caused by shrimp, fish, and various mammals.
Near harbors, there 1s also man-made acoustic noise 1in addition to the ambient noise.
In spite of this hostile environment, it 1s possible to design and implement efficient and
highly reliable underwater acoustic communication systems for transmitting digital
signals over large distances.

Storage Channels

Information storage and retrieval systems constitute a very significant part of data-
handling activities on a daily basis. Magnetic tape, including digital audiotape and
videotape, magnetic disks used for storing large amounts of computer data, optical
disks used for computer data storage, and compact disks are examples of data storage
systems that can be characterized as communication channels. The process of storing
data on a magnetic tape or a magnetic or optical disk 1s equivalent to transmitting
a signal over a telephone or a radio channel. The readback process and the signal
processing involved in storage systems to recover the stored information are equivalent
to the tunctions performed by a receiver 1n a telephone or radio communication system
to recover the transmitted information.

Additive noise generated by the electronic components and interference trom ad-
jacent tracks is generally present in the readback signal of a storage system, just as is
the case 1n a telephone or a radio communication system.

The amount of data that can be stored is generally limited by the size of the disk
or tape and the density (number of bits stored per square inch) that can be achieved by
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The linear filter channel with
() =s(t) x () +n(  additive noise.
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channel, the received signal 1s

r(t) = as(t) + n(z) (1.3-1)

where o 1S the attenuation factor.

The Linear Filter Channel

In some physical channels, such as wireline telephone channels, filters are used to en-
sure that the transmitted signals do not exceed specified bandwidth limitations and thus
do not interfere with one another. Such channels are generally characterized mathemat-
ically as linear filter channels with additive noise, as illustrated in Figure 1.3-2. Hence,
if the channel input 1s the signal s(z), the channel output is the signal

r(t) = s(t) xc(t) + n(t)

. (1.3-2)
— / o(T)s(t — 1) dt + n(t)
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